PILOT'S FLIGHT OPERATING INSTRUCTIONS # P-40D and P-40E AIRPLANES NOTICE: This document contains information affecting the National Defense of the United States within the meaning of the Espionage Act, 50 U. S. C., 31 and 32, as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. PUBLISHED BY AUTHORITY OF THE COMMANDING GENERAL, ARMY AIR FORCES, BY THE HEADQUARTERS, AIR SERVICE COMMAND, PATTERSON FIELD, FAIRFIELD, OHIO #### INDEX OF REVISION PAGES ISSUED | Page | 6.00 | | | Latest
Revised Date | |------|------|--|---|------------------------| | I | | | | 4-10-43 | | 15 | | | | 4-10-43 | | 15A | | | | 4-10-43 | | 15B | | | | 4-10-43 | | 15C | | | | 4-10-43 | | 15D | | | | 4-10-43 | | 15E. | | | | 4-10-43 | | 15F | | | - | 4-10-43 | | 15G | | | | 4-10-43 | | | | | | | NOTE: A heavy black vertical line, to the left of the text on revised pages, indicates the extent of the revision. This line is omitted where more than 50 percent of the page is revised. ### THIS PUBLICATION MAY BE USED BY PERSONNEL RENDERING. SERVICE TO THE UNITED STATES OR ITS ALLIES Paragraph 5.d. of Army Regulation 380-5 relative to the handling of "restricted" printed matter is quoted below. "d. Dissemination of restricted matter,—The information contained in restricted documents and the essential characteristics of restricted material may be given to any person known to be in the service of the United States and to persons of undoubted loyalty and discretion who are cooperating in Government work, but will not be communicated to the public or to the press except by authorized military public relations agencies." This permits the issue of "restricted" publications to civilian contract and other accredited schools engaged in training personnel for Government work, to civilian concerns contracting for overhaul and repair of aircraft or aircraft accessories, and to similar commercial organizations. #### TABLE OF CONTENTS | Section | <u>on</u> | Page | Section | | Page | |---------|---------------------------------------|------|----------|--------------------------------------|-------| | I | Description | 1 | | peration of Communications Equipment | 16 | | | 1. Airplane | 1 | | T 1/ | | | | 2. Power Plant | 2 | 1. | Radio Set SCR-283 (P-40D Airplane) | 16 | | | 3. Propeller | 2 | 2. | Radio Set SCR-274-N (P-40E Airplan | e) 17 | | | 4. Operational Equipment | 2 | 3. | Radio Set SCR-522A (P-40E Airplane |) 17 | | | | | 4. | Pip Squeak (Contactor) Operation - | | | II | Pilot Operating Instructions | 11 | | RC-96 (P-40E Airplane) | 18 | | | 1. Before Entering the Pilot's Com- | | VI Ar | rmament Equipment | 19 | | | partment | 11 | 1 | Dombing Fauinment | 10 | | | 2. On Entering the Pilot's Compart- | | | Bombing Equipment | 19 | | | ment | 11 | 2. | Gunnery Equipment, P-40D Airplane | 19 | | | 3. Starting Engine | 12 | 3. | Gunnery Equipment, P-40E Airplane | 19 | | | 4. Engine Warm-up | 12 | | | | | | 5. Emergency Take-off | 12 | Appendix | | | | | 6. Engine and Accessories Ground Test | 12 | | | | | | 7. Taxying Instructions | 12 | I Gl | ossary | 20 | | | 8. Take-off | 12 | | | | | | 9. Engine Failure During Take-off | 13 | II Co | old Weather Operation | 01 | | | 10. Climb | 13 | 00 | was weather Operation | 21 | | | 11. Flight Operation | 13 | | | | | | 12. General Flying Characteristics | 13 | 1 | Engine Oil Dileties Section | - | | | 13. Engine Failure During Flight | 13 | 2. | Engine Oil Dilution System | 21 | | | 14. Stalls | 13 | 2. | Portable Ground Heater (Type D-1) | 21 | | | 15. Spins | 13 | | Cold Weather Starting of Engines | 21 | | | | | | Batteries | 21 | | | 16. Acrobatics | 13 | | Frost or Ice Removal | 21 | | | 17. Diving | 14 | | Mooring | 21 | | | 18. Emergency Exit | 14 | 7. | Communications Equipment | 22 | | | 19. Approach, Landing and Cross-Wind | | | | | | | Landing | 14 | III En | nergency Operating Instructions | 22 | | | 20. Stopping of Engine | 14 | | | | | | 21. Before Leaving the Pilot's Com- | | | | | | | partment | 14 | 1. | Emergency Take-off | 22 | | | 22. Maneuvers Prohibited | 14 | 2. | Engine Failure During Take-off | 22 | | m TTT | Elicht Occuption Date | | 3 | Engine Failure During Flight | 22 | | III | Flight Operation Data | 15 | 4 | Emergency Take-off if Landing | - 22 | | | 1. Determining Gross Weight | 15 | ** | is not Completed | 00 | | | 2. Flight Planning | 15 | 5 | Emergency Exit | 22 | | | 2. Flight Flammig | 15 | 6 | Emergency Exit | 22 | | IV | Operation of Ownson Favings | | 0, | Emergency Operation of Landing | | | TA | Operation of Oxygen Equipment | 15G | 77 | Gear | 23 | | | 1 Operation | | 7. | Emergency Operation of Wing Flaps | 23 | | | 1. Operation | 15G | 8. | Emergency Bomb Release | 23 | | | 2. Oxygen Duration | 15G | 9. | Belly Tank Release | 23 | #### SECTION I #### DESCRIPTION #### 1. Airplane. a. General. - The P-40D and P-40E Fighter Airplanes are manufactured by the Curtiss-Wright Corporation at Buffalo, New York under contracts W535 ac-12414 and -15802. They are low wing, land monoplanes, each powered by one model V-1710-39 engine. The engine drives a three-bladed electrically-operated propeller. Hydraulically-operated landing gear, tail wheel, wing flaps, and brakes are provided. The approximate over-all dimensions are as follows: Length 31 ft 8-3/4 in. Height, taxying position 10 ft 8 in. Span 37 ft 3-1/2 in. <u>b.</u> Access to Airplane. - Access to the airplane is gained through the canopy over the pilot's cockpit. The canopy may be opened by pressing a flush type release button located at the extreme top rear frame of the windshield proper. If no button is provided, the canopy is held shut by a friction grip, and it may be opened by placing one hand on each side of the canopy and giving it a sudden backward push. #### c. Fuel, Oil, and Coolant. - (1) Fuel: Specification No. AN-VV-F-781, Amend. 5 Grade: 100 Octane - (2) Oil: Specification No. AN-VV-O-446 Viscosity: Summer - 1120 Winter - 1100 - (3) Coolant: Ethylene glycol. - <u>d</u>. <u>Pilot Protection</u>. Front and rear armor protection sufficient to withstand enemy fire by direct right angle hit is provided for the pilot. Enemy fire originating within the areas graphically illustrated in figure 1 will not reach the pilot. - e. Mooring Provisions. Tie-down rings are located in the undersurface of each wing near the wing tip. They are held in a retracted position in the wing by springs, and can be pulled down through slots by small tabs which protrude through the bottom surface of the wing. A towing ring on the inboard end of each landing wheel axle can also be used for tie-down purposes. - f. Fuel System. See figure 4. - g. <u>Oil System</u>. See figure 5. Oil dilution is provided. - h. Cooling System. See figure 6. - i. Hydraulic System. See figure 7. Figure 1 - Angles of Armor Protection Figure 2 - Fuselage Contents Arrangement Diagram Figure 3 - Cockpit Canopy Release Diagram #### 2. Power Plant. The V-1710-39 engine is a 12-cylinder vertical "V" type aircraft engine, glycol cooled, is equipped with integral reduction gears through which the propeller is driven, and is provided with a Bendix-Stromberg model PD-12K-2 carburetor. #### 3. Propeller. The Curtiss constant speed electrically-operated propeller may be controlled automatically or manually. When controlled automatically, a predetermined engine speed is held constant by means of a governor set by the propeller control on the throttle quadrant. When controlled manually, the blade angle is varied by operation of the switch (figure 10) which is independent of the governor. #### 4. Operational Equipment. #### a. Airplane Controls. (1) Cockpit Seat. - The cockpit seat may be adjusted for height by lifting the lock release handle on the right side of the seat, and then raising or lowering the seat as desired. To lock the seat in position, release the locking handle and "juggle" the seat slightly in a vertical direction until its spring-loaded locking device definitely snaps into position. Figure 5 - Oil System Diagram Figure 6 - Cooling System Diagram Figure 7 - Hydraulic System Diagram - (2) Aileron and Elevator. Conventional control stick, equipped with a thumb-operated hydraulic system "OFF-ON" button on the top of the grip, and a squeeze type machine gun trigger lever on the front side of the grip. - (3) Rudder Control. Conventional pedals and toe-operated brakes. Each rudder pedal may be adjusted to desirable length by first pushing inboard on the spring-loaded adjustment lock which permits the pedal to float free on its hinge. After moving pedal to desired location, release lock and juggle pedal slightly to allow locking pin to snap into position. ALWAYS ADJUST BOTH PEDALS TO THE SAME LENGTH. - (4) Elevator Trim Tab Control. The trim tab is actuated by a round control knob (figure 8) on the left side of the cockpit. The knob has calibration marks around its outer circumference. Rotating the knob clockwise (forward) puts the airplane nose down. - (5) <u>Rudder Trim Tab Control</u>. The rudder tab is actuated by a round control knob (figure 8) on the left side of the cockpit. Rotating it to the left (counterclockwise) turns the nose of the airplane to the left. - (6) Aileron Trim Tab Control. The aileron trim tab is electrically controlled. When the switch (figure 10) is raised, the left wing raises, and when the switch is pushed down, the left wing lowers. The switch returns to a neutral "OFF" position when released, allowing trim tab to remain as adjusted. - (7) <u>Landing Gear and Tail Wheel</u>. Hydraulically actuated with provisions for automatic power or hand operation. - (a) Gear Down. The landing gear may be lowered (WHEN THE IAS IS 175 MPH OR LESS) by pulling the safety latch bolt on the landing gear lever (figure 8) forward, and lowering the handle to its "DOWN" position. Press the hydraulic control switch button on top of the control stick until a few seconds after the
indicator (figure 10) shows the gear to be down and locked in place. As a final check, operate the hand pump (figure 9) and if a high pressure is required to move it, the gear is down. If the landing gear warning horn fails to sound when the throttle lever (figure 8) is closed, the landing gear locks are definitely in place. RETURN THE CONTROL LEVER (FIGURE 8) TO "NEUTRAL." The safety latch bolt prevents the accidental raising of the handle beyond the neutral position. NOTE: The gun charging valve handles must be in the "OUT" position when operating the landing gear. (b) Gear Up. - The gear may be raised at any speed. Pull the safety latch bolt on the landing gear control lever (figure 8) forward, and raise the handle to its "UP" position. Press the hydraulic switch button on the top of the control stick until the indicator (figure 10) on the instrument panel shows the gear completely up. RETURN CONTROL HANDLE (FIGURE 8) TO "NEUTRAL" AFTER GEAR IS RETRACTED. Figure 8 - Cockpit - Left Side - (c) Emergency Operation. If the hydraulic switch button on the top of the control stick fails to operate the landing gear, manually operate the auxiliary hand pump. (See figure 9.) If this fails to operate the gear, manually operate the emergency hand pump. (See figure 9.) When the emergency system is used to lower the landing gear, a "tail high" landing must be made, because the emergency system does not operate the tail wheel. - (8) Wing Flaps Operation. Hydraulically actuated with provisions for automatic power or emergency hand operation. - (a) Flaps Down. Move flap control lever (figure 8) to "DOWN" position. Press button on top of control stick until a second or two after indicator shows flaps are down. If a high pressure is required to move the auxiliary hand pump, the wing flaps are fully extended. RETURN FLAP CONTROL HANDLE TO "NEUTRAL" AFTER EXTENSION. <u>CAUTION</u>: DO NOT LOWER FLAPS WHEN AIR SPEED IS ABOVE 140 MPH. (b) Flaps Up. - Move flap control lever to "UP" position. Press button on top of control stick until a few seconds after indicator on instrument panel shows flaps are retracted. RETURN FLAP CONTROL LEVER TO "NEUTRAL" AFTER RETRACTION. NOTE: The flaps may be placed in any intermediate position by releasing the button on the control stick when the flap position indicator shows the desired deflection. - (9) <u>Landing Gear Warning Horn.</u> The horn may be tested by first turning the ignition switch (figure 10) to "BAT" and then turning the landing gear warning horn switch "ON." Sounding of the horn indicates that the horn and its circuits are in good working order. Turn switches "OFF." - (10) Warning Horn Disconnect Switch. Pull out the cam on the throttle rod to disconnect the switch temporarily. Automatic engagement of the switch results the next time the throttle is opened to its stop, placing the warning horn back in operation. - (11) Heating and Ventilation Control. Pull the control (figure 9) for heat and push for cold. The control may be set for any intermediate position. Closing the radiator shutters increases the temperature of the air coming into the cockpit. - (12) <u>Fuel Tank Gages</u>. Gages are direct visual reading gages. It is not necessary to operate any switch to place them in operation. - (13) Fuel Selector Valve. Conventional. (See figure 8.) <u>CAUTION</u>: Do not turn pointer through "BEL-LY" when the belly tank is not installed. (14) Radiator Shutter Control. - Move the control (figure 9) up to close and down to open the shutters. Set as the coolant and outside temperatures require. This control is equipped with an index finger release lock which must be operated before the shutter control can be moved. The coolant temperature warning lamp (figure 10) can be tested by operating the small test switch. (See figure 10.) <u>CAUTION</u>: Do not extend radiator shutters at IAS in excess of 175 mph. - (15) <u>Parking Brake</u>. The parking brake lever (figure 10) will lock the wheels if pulled when the toe brakes are depressed. The parking brake will release automatically by pressing on the toe brakes. - (16) Lights. - (a) Cockpit Lights. - 1. The ignition switch (figure 10) must be turned to "BAT" before any lights will function by operation of their individual switches. Turn on cockpit lights by placing switch (figure 10) in the "ON" position. Adjustment of the knurled ring on the end of the flexible fluorescent lamp will control its light. - 2. A cockpit spotlight (figure 9) is located on each side of the cockpit, and both are controlled by a switch (figure 10) on the central control panel. - 3. The brilliancy of the compass light and the gun sight may be regulated by turning the two rheostat controls. (See figure 10.) - (b) Landing Light. After the switch (figure 10) has been turned on, the light will not glow until after the landing light mechanism has extended the lamp to its operating position. Do not operate the landing light at speeds in excess of 175 mph. The switch has three positions, up and down for "ON" and neutral for "OFF." When the switch is placed in the upper "ON" position, the landing light swings down and out of the left wing. The light automatically illuminates after passing the center line of the pivot. When the switch is placed in the lower "ON" position, the landing light retracts up into the wing and is automatically turned off. The entire circuit is open when the toggle is in the neutral "OFF" position. <u>CAUTION</u>: Do not test operate the light for more than 5 seconds. Do not operate the light for more than 3 minutes. - (17) <u>Windshield Defroster Control</u>. The glycol spray pump must be operated by hand to force the liquid onto the windshield. - (18) <u>Coolant and Fuel Pressure Test Switch.</u> The switch (figure 10) is a double-throw momentary contact toggle switch with two "ON" positions and a neutral "OFF" position. The coolant test "ON" position is the upper "ON" position, and the fuel pressure test "ON" position is the lower. (19) Pilot's Shoulder Strap Adjustment. - The locking pin handle may be placed in the locked or unlocked position by pressing the button on its top and moving it fore or aft. When the handle is in the aft position, the locking pin is in the released position and the only restraining force on the shoulder straps is the bungee spring. The straps may be locked by having the bungee in its retracted position and inserting the locking pin by placing the handle in the forward position. #### (20) Cockpit Enclosure. - (a) General. Fore and aft movement of the enclosure is controlled by a crank (figure 9) located on the right side of the cockpit. The canopy can be locked in the closed position from the outside by inserting a padlock through the locking lug on the lower left side of the canopy frame. - (b) Emergency Exit on Ground. In case of a turn-over on the ground, the kick-out panel on the left side of the canopy may be opened by pulling handle (figure 3) inward and aft which disengages the panel frame from the canopy frame and allows the panel to swing open. The canopy can also be opened from the outside by pulling the release handle outward and forward. - (c) Emergency Exit During Flight. Pull down on release tab located on the upper forward beam of the canopy. - WARNING Before every flight be sure that the canopy release mechanism is lockwired shut. If lock wires are not installed, the canopy may be ripped off by slipstream, causing serious damage to the airplane. - (21) Parking Harness. The control surfaces are locked by rigging the parking harness around the control stick. The short cables on the harness fasten into the eyes on the rudder pedal frames and the long cables fasten into the eyes on the pilot's seat frame. The parking harness is stowed in the fuselage baggage compartment. #### b. Power Plant Controls. - (1) Throttle Control. Conventional. - (2) <u>Mixture Control</u>. On the left side of pilot on throttle quadrant and has four positions: "IDLE CUT-OFF," "AUTO LEAN," "AUTO-RICH," and "FULL RICH." - (a) To increase engine power during flight, set the mixture control in "AUTO-RICH," adjust propeller to desired rpm, adjust the throttle to obtain the desired manifold pressure and then readjust the mixture control if necessary. - (b) To decrease engine power, adjust the throttle to obtain desired manifold pressure and adjust the propeller control to obtain desired rpm. Readjust mixture control if necessary. - (3) Oil Dilution. When a cold-weather start is expected, the oil should be diluted before the engine is stopped. Operate the engine at about 800 rpm and hold the oil dilution switch (figure 10) "ON" for about 4 minutes. - (4) <u>Propeller Control.</u> Whenever the airplane is being operated, the safety switch (figure 10) should be "ON." When the switch opens due to overload, it may be reset by placing it in the "OFF" position and then returning it to the "ON" position. Propeller pitch may be changed independently of the rest of the propeller control system by holding the three-way toggle switch (figure 10) in either the "INC. RPM" or "DEC. RPM" position until the desired rpm is obtained. The automatic constant speed control may be used by placing the switch in the "AUTO" position and setting the propeller governor control lever (figure 8) to the required rpm. - NOTE: The markings on the propeller control are approximate. The desired rpm should be obtained accurately by reading the tachometer. - (5) <u>Primer Control</u>. The primer (figure 9) must be turned counterclockwise to the "ON" position and pumped to prime the engine. - (6) <u>Carburetor Heat Control</u>. This control (figure 10) operates a hinged vane in the carburetor air intake duct elbow and permits either warm air from the engine compartment or cold air from outside to enter the carburetor. NOTE: The engine should be operated on "FULL COLD" at all times unless engine behavior leads the pilot to believe that carburetor icing conditions are being
experienced and in that case, the control should be moved to "FULL HOT." If this does not clear up the trouble, the control should again be returned to the "FULL COLD" position. #### SECTION II #### PILOT OPERATING INSTRUCTIONS - Before Entering the Pilot's Compartment. Check weight and balance. - 2. On Entering the Pilot's Compartment. - a. Special Check for Night-flying. - (1) Turn ignition switch (figure 10) to "BAT." - (2) Turn cockpit fluorescent lamp (figure 10) and the two cockpit spotlights (figure 10) "ON." - (3) Test operate fuel gage lights. (See figure 10.) - (4) Test operate running lights. (See figure 10.) - (5) Test operate landing lights. (See figure 10.) - (6) Test operate the compass light brilliancy. (See figure 10.) - (7) Test operate gun sight lights. (See figure 10.) - b. Check for All Flights. - (1) Ignition switch (figure 10) "OFF." - (2) Gun selector switches (figure 10) "OFF." - (3) Landing gear control handle (figure 8) in neutral. - (4) Flap control handle (figure 8) in neutral. - (5) Parking brake (figure 10) on. - (6) See that controls are FREE, - (7) Turn ignition switch to "BAT." CAUTION: When turning to the "BAT" position for preflight check be absolutely sure that the switch is not placed in either magneto position ("L" or "R") as the respective engine magnetos will then be "hot" with possible danger to the ground crew. - (8) Fuel selector (figure 8) on "RES." Do not turn selector valve to "BELLY" if the belly tank is not installed. - (9) Generator line switch (figure 10) "ON." - (10) Propeller circuit breaker switch (figure 10) "ON." - (11) Propeller selector switch (figure 10) in "AUTO." - (12) Throttle (figure 8) wide open. - (13) Mixture control on "IDLE CUT-OFF." - (14) Carburetor air heater control (figure 10) in full "COLD" position. - (15) Radiator shutter control (figure 9) as required. #### 3. Starting Engine. - a. Cold Engine. With ignition switch (figure 10) "OFF," pull propeller through about three revolutions. - b. Turn ignition switch to "BAT." - c. Prime the engine two to four strokes. - d. ENERGIZE starter. - e. With mixture control (figure 8) in "IDLE CUT-OFF" position and the throttle wide open, operate the electric fuel pump switch (figure 10) to obtain 16 pounds per square inch. - f. Turn ignition switch to "BOTH," and engage the starter. - g. When engine begins to fire, immediately retard throttle and set mixture control to "AUTO-RICH." <u>CAUTION</u>: If engine does not fire, return mixuture control lever to "IDLE CUT-OFF" immediately. \underline{h} . Set throttle to maintain an engine speed between 800 and 1000 rpm until the oil pressure begins to come up. warning Do not operate the electrical booster pump with the mixutre control out of "IDLE CUT-OFF," when the engine is NOT FIRING. Prime to keep the engine from stalling. Pumping the throttle does NOT prime the engine. #### 4. Engine Warm-up. - <u>a</u>. Idle the engine between 500 and 800 rpm for 30 seconds after normal idling oil pressure (15 pounds per square inch) is indicated on the gage, and then continue the warm-up between 800 and 1000 rpm. - b. Set radiator shutters as desired. - c. Set carburetor heat control (figure 10) "COLD." <u>CAUTION</u>: Do not attempt take-off with the carburetor heat control "ON." #### 5. Emergency Take-off. If the engine was properly diluted when previously stopped, no trouble should be experienced in maintaining oil pressure within the limits set forth in the SPECIFIC ENGINE FLIGHT CHART in section III. However, the engine may be flown as soon as it will "take" the throttle, the oil dilution system being operated sufficiently to overcome oil pressure above or below the limits. There is very little danger of overdilution, so operate the system as the oil pressure gage (figure 10) indicates. Refer to paragraph 8. of this section for routine take-off procedure. #### 6. Engine and Accessories Ground Test. - a. After warm-up has been completed, advance throttle to obtain 2300 rpm. - b. Test ignition on each magneto. warning This test should never exceed 15 seconds on either magneto. Drop should not exceed 80 rpm on either magneto. - c. Set propeller governor control (figure 8) at 2800 rpm and then set propeller selector switch (figure 10) to "AUTO." - d. Check fuel and oil pressures. Refer to Specific Engine Flight Chart. - e. Check oil and coolant temperatures. Refer to Specific Engine Flight Chart. #### 7. Taxying Instructions. The view ahead is poor when taxying; it is, therefore, necessary to keep swinging the airplane from side to side for visibility directly ahead. <u>CAUTION</u>: Avoid taxying through mud holes and tall grass as the propeller can easily be damaged by small stones, mud clots, or hidden pieces of foreign material. <u>DO NOT TAXY</u> <u>WITH FLAPS EXTENDED</u>. #### 8. Take-off. #### a. Preflight Check. - (1) Set rudder trim tab control (figure 8) to neutral. - (2) Set elevator trim tab control (figure 8) to neutral. - (3) Set left aileron trim tab flush with the trailing edge of the aileron by operating switch. (See figure 10.) - (4) Mixture control (figure 8) "AUTO-RICH." - (5) Propeller pitch at 2800 rpm. - (6) Fuel selector valve (figure 8) to "RES." and check fuel pressure. (See figure 10.) - (7) Set flaps as required, but never over one-half way down. <u>CAUTION</u>: When using flap control handle be sure that the landing gear control is not moved by mistake. - (8) Radiator shutter control (figure 9) wide "OPEN." - (9) See that controls are free. - (10) Refer to section III for all flight operating data. #### b. Take-off Procedure. - (1) Raise landing gear and tail wheel as soon as practicable after leaving the ground. - (2) In flight the flaps will go up automatically as soon as the flap control (figure 8) is set in its "UP" position. <u>CAUTION</u>: Anticipate the sudden resultant loss of lift caused by the raising of the flaps. #### 9. Engine Failure During Take-off. - Nose down immediately. - \underline{b} . Belly tank (if installed). Pull release lever immediately. - c. Mixture control to "IDLE CUT-OFF." - d. Ignition switch "OFF." - e. Put nose of airplane well down and maintain a gliding speed of approximately 110 mph STRAIGHT AHEAD. DO NOT TRY TO TURN BACK INTO THE FIELD. <u>CAUTION</u>: LAND AIRPLANE ON ITS BELLY; <u>DO NOT</u> attempt to lower the landing gear. #### 10. Climb. If flaps are used for take-off, do not raise them below 500 feet altitude. #### 11. Flight Operation. Use the FLIGHT OPERATION INSTRUCTION CHARTS in section III during flight. #### 12. General Flying Characteristics. <u>a</u>. <u>Stability</u>. - With normal and full military loads, the airplane is stable. #### b. Trim. Landing gear DOWN - Nose heavy until retrimmed Flaps DOWN - No appreciable change During dive - Strong yaw to right During climb - Strong yaw to left #### c. Order of Fuel Tank Use. Belly tank (if installed) Fuselage tank Main tank Reserve tank #### d. Belly Tank. - (1) If the airplane is equipped with a belly tank, the fuel selector valve (figure 8) should be set at "BELLY" as soon as practicable after take-off. - (2) If the belly tank is dropped during flight, a slight tail heaviness will be observed. #### 13. Engine Failure During Flight. - a. Drop nose of ship immediately. - b. Ignition switch "OFF." - c. If airplane is equipped with belly tank, pull release lever immediately. - d. Fuel selector valve "OFF." - \underline{e} . Lower flaps manually with the auxiliary hand pump. - <u>f</u>. If a suitable landing field is available, the landing gear may be lowered. If not, <u>keep landing gear UP</u> and land airplane on its belly. #### 14. Stalls. a. Stalling speeds. (Power on.) Flaps and landing gear DOWN - 75 mph IAS Flaps and landing gear UP - 85 mph IAS <u>b</u>. Stalls develop very rapidly with a consequent rapid dropping of the nose and a rapid "Whipping" or rolling movement (usually to the left). The airplane has no tendency to go into a spin from a stall. #### 15. Spins. Intentional spinning is prohibited; however, if a spin develops, throttle back and apply opposite rudder and at normal load and cg positions, will be effective within two turns. The spinitself is extremely violent. #### 16. Acrobatics. Cage gyro horizon indicator before doing acrobatics. All normal acrobatics may be done with the exception of those listed in paragraph 22. of this section. warning Care must be taken to see that ample height is left for recovery from any maneuver, as acceleration during the dive is rapid, and at high speeds the initial pull-out is inclined to be heavy. The elevator trim tab is very sensitive and should not be employed to assist in a pull-out unless absolutely necessary. #### 17. Diving. - \underline{a} . Speed Limitation. Do not exceed a diving speed of $\underline{480}$ mph IAS or $\underline{3120}$ rpm. - <u>b.</u> Stability. Elevator and rudder loads are heavy at high diving speeds. Strong yaw to the right and right wing heaviness require use of trim tabs to counteract turning and rolling forces. <u>CAUTION</u>: Pull out should start at 8000 feet for dives at maximum diving speeds. c. Power Off Dives. - To decrease the possibility of the engine malfunctioning and missing considerably, upon opening the throttle after pull-out from POWER OFF DIVES, the following precaution will be rigidly observed: "DO NOT CLOSE THE THROTTLE TO ALLOW A MANIFOLD PRESSURE OF LESS THAN 20 INCHES HG DURING DIVE." #### 18. Emergency Exit. - a. In Flight. Pull release handle at top forward frame of the cockpit and the entire canopy will open. - b. Turn-over on Ground. Remove parachute harness, pull the emergency release handle and pushopen the "kick-out" panel on the left side of the canopy. This panel may be opened from the outside by operating the handle indicated on the lower rear left cabin frame. - 19. Approach, Landing and Cross-wind Landing. #### a. Approach. - (1) Gun selector switches (rigure 10) "OFF." - (2) Mixture control (figure 8) to
"AUTO-RICH." - (3) Propeller control (figure 8) to 2230 rpm and slowly close throttle to about 18 inches Hg manifold pressure. - (4) Turn fuel selector vaive (figure 8) to a full main tank. - (5) Close radiator shutter as necessary. - (6) Lower the landing gear when the IAS is below 175 mph. - (7) Flaps must not be lowered with air speed above 140 mph IAS. - <u>b.</u> Emergency Operation of Landing Gear. If the hydraulic switch button on top of the control stick grip and the auxiliary hand pump fail to put the gear down, pump it down with the emergency hydraulic pump. (See figure 9.) - c. Emergency Operation of Flaps. If the hydraulic switch button on the control stick grip fails to extend the flaps, pump them down with the auxiliary hydraulic hand pump. (See figure 9.) - d. Cross-wind Landing. Avoid cross-wind landings whenever practicable. - e. Landing. At conclusion of landing run: - (1) Close throttle. - (2) Open radiator shutters. - (3) Raise the wing flaps. - f. Emergency Take-off if Landing Is Not Completed. - (1) Open throttle and after propeller rpm has stabilized, increase rpm to 2800. - (2) Do not retract flaps until above a 500-foot altitude. - 20. Stopping of Engine. - \underline{a} . Apply toe brakes and set parking brake lever. (See figure 10.) - \underline{b} . Hold flight control stick back and run engine up to about 18 inches Hg for 30 seconds. - <u>c</u>. When cold-weather starting is anticipated, dilute the oil system for about 4 minutes at 800 rpm before stopping the engine. - <u>d</u>. Move mixture control to "IDLE CUT-OFF," holding oil dilution switch (figure 10) "ON" until engine stops. - e. When propeller stops rotating, turn ignition switch "OFF." - 21. Before Leaving the Pilot's Compartment. - a. Fuel selector valve (figure 8) "OFF." - <u>b</u>. All cockpit light switches, pitot heater switch, fuel gage light switches, etc., "OFF." - c. Ignition switch "OFF." - d. Cage gyro horizon indicator. - \underline{e} . If oxygen has been used during flight, close valve to prevent leakage. - f. Lock flight controls. - g. Make out Form 1. - 22. Maneuvers Prohibited. installed. Outside loop Inverted flight Inverted spin Snap roll at speed in excess of 140 mph IAS Slow roll at speed in excess of 285 mph IAS Spin of more than three turns Spin with baggage, auxiliary fuel, or any other overload Aerobatics are prohibited when belly tank is #### SECTION III #### FLIGHT OPERATION DATA #### 1. Determining Gross Weight. Refer to the "WEIGHT AND BALANCE CHART" in this section and check the listed basic and alternate tabulated items against those loaded in the airplane. If the airplane is loaded in accordance with the "Basic Load Items" whose weights are entered in the "Pounds" column, and the "Alternate Items" whose weights are entered under four loading conditions in the "Alternate Loading (Pounds)" column, the gross weight will be found listed at the bottom of the chart. If any items tabulated in the "Pounds" column are omitted in the loading of the airplane, deduct the weight of the missing items from the "Gross Weight," and the resulting figure will be the correct gross weight as the airplane is actually loaded. #### 2. Flight Planning. #### a. General. - (1) A series of charts on the following pages is provided to aid in selecting the proper power and altitude to be used for obtaining optimum range of the airplane. A chart is provided for each airplane configuration with its probable range of gross weight. - (2) If the flight plan calls for a continuous flight where the desired cruising power and air speed are reasonably constant after take-off and climb and the external load items are the same throughout the flight, the fuel required and flight time may be computed as a "single section flight." If this is not the case, the flight should be broken up into sections, and each leg of the flight planned separately since dropping of external bombs or tanks causes considerable changes in range and air speed for given power. (Within the limits of the airplane, the fuel required and flying time for a given mission depend largely upon the speed desired. With all other factors remaining equal in an airplane, speed is obtained at a sacrifice of range, and range is obtained at a sacrifice of speed.) #### b. Use of Charts. - (1) Although instructions for their use are shown on the "FLIGHT OPERATION INSTRUCTION CHARTS," the following expanded information on proper use of the charts may be helpful. - (2) Select the "FLIGHT OPERATION INSTRUCTION CHART" for the model airplane, gross weight - and external loading to be used at take-off. The amount of gasoline available for flight planning purposes depends upon the reserve required and the amount required for starting and warm-up. The fuel required for warm-up is set forth on the chart. Reserve should be based on the type of mission, terrain over which the flight is to be made, and weather conditions. The fuel required for climb and time to climb to various altitudes is shown on the "TAKE-OFF, CLIMB, AND LANDING CHART." Fuel remaining after subtracting reserve, warm-up, and climb fuel from total amount available is the amount to be used for flight planning. - (3) Select a figure in the fuel column in the upper section of the chart equal to, or the next entry less than, the amount of fuel available for flight planning. Move horizontally to the right or left and select a figure equal to, or the next entry greater than, the distance (with no wind) to be flown. Operating values contained in the lower section of the column number in which this figure appears, represent the higher cruising speeds possible at the range desired. It will be noted that the ranges listed in column I under "Maximum Continuous Power" are correct only at the attitude shown by the note on the chart for this column. The ranges shown in column II and other columns to the right of column II can be obtained at any of the altitudes listed in the "Density Altitude" column. All of the power settings listed in a column will give approximately the same number of miles per gallon if each is used at the altitude shown on the same horizontal line with it. Note that the time required for the flight may be shortened by selection of the higher altitudes. In long range cruising it is important that altitude air speed and rpm be held constant. The manifold pressure should be changed as required to hold the above values reasonably con- - (4) In order to obtain the flight duration, pilot's indicated air speed must be converted to true air speed and this true speed divided into the air miles to be flown. True air speed may be obtained first by correcting pilot's indicated air speed for position error to obtain an approximate calibrated indicated air speed; then apply the pertinent altitude correction factor to this calibrated indicated air speed. (The air-speed indicator on the P-40 series reads about 2 miles per hour slow at 150 miles per hour and about 10 miles per hour slow at 300 miles per hour.) The following table shows the approximate true air speed corresponding to pilot's indicated air speed on the P-40 series airplanes. | PILOT'S
I. A. S. | | APPROX | IMATE TIME A | IR SPEED | |---------------------|-------|--------|--------------|----------| | | 5,000 | 10,000 | 15,000 | 20,000 | | 150 | 165 | 180 | 190 | 210 | | 200 | 220 | 240 | 260 | 280 | | 250 | 270 | 300 | 320 | 350 | | 300 | 330 | 360 | 390 | 415 | | 350 | 390 | 420 | 450 | 480 | (5) The flight plan may be readily changed at any time en route, and the chart will show the balance of range available at various cruising powers by following the INSTRUCTIONS FOR USING CHART printed on each chart. <u>IMPORTANT</u>: The above instructions and following charts do not take into account the effect of wind. Adjustments to range values and flight duration to allow for wind may be made by any method familiar to the pilot such as by the use of a flight calculator or a navigator's triangle of velocities. <u>CAUTION</u>: Ranges listed in column I under "Maximum Continuous Power" are correct only at the altitude given in footnote 1, and the engine and airplane operating data listed under OPERATING DATA will give constant miles per gallon if operation is consistent with values set opposite the listed altitudes. (6) The flight plan may be readily changed at any time en route, and the chart will show the balance of range at various cruising powers by following the "INSTRUCTIONS FOR USING CHART" printed on each page. If the original flight plan calls for a mission requiring changes in power, speed, gross load, or external load, in accordance with "GR. WT." or "EXTERNAL ITEMS" increments shown in the series of "FLIGHT OPERATION INSTRUCTION CHARTS" provided, the total flight should be broken down into a series of individual shortflights, each computed as outlined in paragraph 2.a. in its entirety, and then added together to make up the total flight and its requirements. | P-4OD E | 8, 1942
8, 1942
AN-H-8 | | AIRPL | AIRPLANE MODELS | MODE | LS | | TAN | TAKE-OFF, | | CLIMB & | & LAP | LANDING | G CHART | ART | | В | NGINE | ENGINE MODELS | ELS | |
--|------------------------------|---------|----------|-------------------|---------------------|------------|----------|----------------------|-----------|----------------------|------------|-----------|--------------|------------|------------|----------------------|-------------|--|--|----------------------|----------------------| | Name | Dec. 1 | | P-4 | | ш | | | | AK | - 0 F | ۵ | - | ш | IN FEET | | | 121-1 | 10 | | (X | | | | GBOSS | | FAD WIN | | HAI | 0 | CE | RUNWA | | | | SOD-T | | UNWAY | | | 50 | F | w | RUNWAY | | | 1 1 1 1 1 1 1 1 1 1 | WEIGH | | | | | | 3,000 FT | | 6,000 FT. | | | | | - | T 6,000 FT | AT | SEA LEVE | | 3,000 FT. | AT 6 | AT 6,000 FT. | | 10 150 | CIN LBS | | | | | | - | - | | | - | - | - | | - | | - | - | 4D TO CLEAR
50' OBJ. | R GROUND | TO CLEAR
50' OBJ. | | 10 1300 12 | 8700 | | | | | | | | | | 7.12.23.15 | | | | | 200 | | | | | - | | 100 | 8100 | | | | 2200
1550
950 | | - | | The same | 200 | | | 100 | | - | | | | 2350 | 2200 | 3500
2550
1600 | | MISSIONS USE 3000 | 7500 | | | - | 1200 | | | | TRAIT LA | 2000 | | | 39/7 8 | | - | | | | 2250 | 1750 | 2800 | | Type St. 10 Tr. Att. | NOTE: IN | ICREASE | DISTANCE | - | FOR EACH | H 10°C AB | OVE O'C | + | FOR EACH | 20°F ABC | OVE 32*F) | | | | ENGINE LIA | AITS FOR T. | AKE-OFF | 3000 | RPM & | 45.5 | IN. HG | | Type St. 10 Type St. 10 Type St. 10 Type T | OMBAT | MISSION | | 3000 | M48 | 9*111 | * | | | 2 | N N | DATA | bour
bour | hau I | | N Vad | NO. | | | 000 | | | Cummary 145 126 | SPOSS | TVDE | S. L. TO | | | | | FI A | 11 | | | TA AL | | | | 14 17 | | | | 07 9 11 | IN HG | | 100 9.5 38 32 135 117 650 15.3 46 38 130 1250 8.3 35 29 135 117 800 13.2 43 36 130 1250 8.3 35 29 135 117 800 13.2 43 36 130 130 13.2 130 13.2 40 33 130 1400 7.2 34 28 135 117 800 12.2 41 34 1400 7.2 34 28 135 117 850 22.0 41 34 1400 7.2 34 28 135 117 850 114 40 33 130 150 150 150 17 800 17 800 150 150 150 150 100 1250 2800 2200 150 1800 1150 1900 1250 2800 2200 150 1800 1150 1900 1250 2800 2200 150 1800 1150 1900 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800
2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1150 1800 1250 2800 2200 150 1800 1250 2800 2200 150 1800 1250 2800 2200 150 1800 1250 2800 2200 1800 1800 2200 | VEIGHT
N LBS. | CLIMB | BEST | 1 10 | | | | - | 1 | | FT/MIN | | 1 | LA.S. | | - | 1 | LA.S. | /MIN FROM | FUEL FROM S.L. | BLOWER | | 1250 8.3 35 29 135 117 800 13.2 43 36 130 130 13.2 43 35 130 133 30 36.0 45.0 45 37 34 38 32 130 113 500 26.0 45 37 39 350 16.2 35 29 130 113 650 22.0 41 34 34 34 34 34 34 34 | 8700 | COMBAT | 145 | | | 130 | _ | | | | 1100 | | 00.02 | - | - | 94 | | -13 | 250 26.1 | | | | H400 7.2 34 28 135 117 950 11.4 40 33 130 | 0010 | COMBAT | 145 | 26 2050
17 800 | | 130 | | | | | | | 75 9504 | | | 1000 | | = 3 | 100 21.6 | 53 | | | D S T A N C E (IN FET) FUEL INCLUDES | 7500 | COMBAT | 135 1 | 26 2300
17 950 | | 130 | | | | | | | | | | 01 | | -13 | 18.1 | 811 | | | FIRM DRY SOD | IOTE: IN | CREASED | ELAPSED | CLIMBING | TIME | % FOR | EACH 10 | C ABOV | | E AIR TEM | NPERATUR | | FOR EA | CH 20°F AL | BOVE 32*F | | INCLUDE | S WARM-U | P AND TAK | E-OFF ALL | OWANCE | | FIRM DRY SOD | | | | | | | | | Z | D N I | DIS | TAN | | 4 FEET) | | | | | | | | | Color AT 3,000 FT. AT 6,000 FT. AT SEA LEVEL | GROSS | BEST | . A. S. | | HAR | RD DRY | SURFA | CE | | | | | | QC | | | | F | OR SLIPPER | ERY | | | AROUND TO CLEAR GROUND CLEA | WEIGHT | APPR | 1 | 4 | - | 2 | O FT. | AT 6,0 | 00 FT. | AT SEA | - | | O | | 9 | AT SE | 1 | | O. | AT 6,0 | AT 6,000 FT. | | 1200 1950 1300 2100 1400 3100 2450 1050 1800 2200 2200 1050 1800 1150 1900 1250 2800 2200 ALLOW 20% INCREASE IN GROUND ROLL. | IN LBS. | МРН | - | - | - | - | ROLL | TO CLEAR
50' OBJ. | ROLL | TO CLEAR
50' OBJ. | - | - | | | - | TO CLEAR
50' OBJ. | | - | GROUND | TO CLEAR
50' OBJ. | GROUND | | ALLOW 20% INCREASE IN GROUND ROLL. | 8400 | 96 | | | 950 | 1850 | 1200 | 2000 | 1300 | 1850 | 1200 | | 1300 | 21 00 | 1950 | 3100 | 2450 | 3350 | 2700 | 3650 | 2950 | | * For five minutes only - then use 2600 RPM & 38.5 IN. HG | VOTE: FO | R GROU | ND TEMPE | ERATURES | ABOVE 35 | 5°C (95°F) | INCREAS | E APPROA | CH LA.S. | 10% ANE | ALLOW | 20 % INCR | EASE IN | GROUND R | | 2007 | 2007 | 2000 | 2007 | 2620 | 4000 | | | EMARKS | * | r five n | ninutes | 1 | then use | | | .5 IN. HC | 9 | | | | | | | → m @ m Z Q | M.P.H.: Indi
M.P.H.: Mila
S.L.: Sea
U.S.: U.S.: Impo
NOTE: All I
RED FIGURE | Indicated Air Speed
Miles Per Hour
See Level
U. S. Gallons
Imperial Gallons
All Distances are Avv
SURES HAVE NOT B | d SEEN FLIGHT | CHECKE | | TAKE-OFF, CLIMB & LANDING CHART | | ACE RUNWAY | | 000 FT. AT 6,000 FT. AT 5EA LEVEL AT 3,000 FT. AT 6,000 FT. AT 5EA LEVEL AT 3,000 FT. AT 6,00 | TO CLEAR GROUND GROUN | 4400 3250 5500 2150 3650 2850 4450 2350 460 2350 3650 2850 1750 3250 4150 1500 2850 1700 3700 5850 2100 1250 2750 1400 2850 1750 2250 4150 1500 2850 1400 2850 1450 1450 1450 2850 1450 2850 1450 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2850 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 2860 1460 286 | 3450 2550 4300 1700 2850 2100 3500 2850 4400 1650 3000 2250 3650 2850 4600 2450 1550 3550 1150 2100 1450 2550 1300 3350 1550 350 2050 550 1250 1600 1000 2100 600 1300 800 1650 1050 2150 | | OVE 0°C (% FOR EACH 20°F ABOVE 32°F) ENGINE LIMITS FOR TAKE-OFF 3000 RPM & 45.5 IN. HG | 86 0000 | CLIMB DATA | TIME FUEL FROM S.L. BEST I.A.S. E7/AIN FUEL FROM S.L. BEST I.A.S. F7/AIN FROM S.L. BEST I.A.S. F7/AIN | FUM U.S. IMP. APPH KNOTS TITMEN SEUN STATES IMP. BPH KNOTS TITMEN SEUN STATES IMP. APPH KNOTS TITMEN SEUN SEUN SEUN SEUN SEUN SEUN SEUN SE | 1250 6.4 32 27 140 122 900 10.8 40 33 130 114 500 18.0 51 43 130 114 100 34.9 80 67 550 17.6 36 30 135 117 500 27.0 46 38 130 114 250 40.3 61 51 | 5.4 | | EACH 10°C ABOVE 0°C FREE AIR TEMPERATURE (% FOR EACH 20°F ABOVE 32°F) FUEL INCLUDES WARM-UP AND TAKE-OFF ALLOWANCE | LANDING DISTANCE (INFEET) | SURFACE FIRM DRY SOD WET OR SLIPPERY | FT. AT 6,000 FT. AT SEA LEVEL AT 3,000 FT. AT 6,000 FT. AT 5,000 FT. AT 6,000 | FOLL SO '08. ROLL | 1250 1700 1150 1850 1250 1950 1350 2850 2300 3100 2500 3350 | 1000 1700 1100 1550 1050 1650 1100 1800 1200 2550 2050 2800 2250 3000 2400 NOCERASE APPROACH LA.S. 10% AND ALLOW 20% INCREASE IN GROUND ROLL. | 9 | |---------------------------------|------------------|-------------|-----------|---|--|---|---|------|---|---------|------------|---|--|--|-------------|--------|---|---------------------------|--------------------------------------|---
---|---|---|----------------------------------| | 01 | ELLY | S. BOM | 2000 | AT 3, | AR GROUND | 2800 | 2050 | | FOR EACH 10°C ABOVE 0°C (| | * ## 4 | BEST LAS. | KNOTS | 15 126 | 15 126 | , | % FOR | | HARD DRY | AT 3,000 | TO CLEAR
50' OBJ. | 1750 | 1550
35°C (95°F) | For five minutes only - then use | | AIRPLANE MODEI | OR 75 GAL. BELLY | OOLB. | | SEA LEVEL | D TO CLEAR
50' OBJ. | 25000 | 2850 | | FOR EAC | | RPM & | - | S. L. M | 0 3.0 145 | 0 2.6 145 | | 3 TIME | | HA | LEVEL | GROUND | 1050 | | only - | | ANE A | 756 | OR ONE SOOL | | AT SEA | GROUND | 200 1350 | 050 | | 38 | | 3000 | 2 | TTS FT/MIN | 122 1650 | 122 1900 | | CLIMBING | | | AT SEA LEVEL | TO CLEAR
50' OBJ. | 1600 | 1450 | ninutes | | IRPLA
P | 52 OR | O H O | HEAD WIND | | KNOTS | 35 | 35 | 35 | STANCE | | USE 3 | S. L. 10 | MPH KNOTS | 140 12 | | | LAPSED | | 10 | | OT STOWN | 83 | 88 AD TEMPE | five | | ₹ | NE 5 | N N | HEA | | MPM | 20 o | 620 | 4000 | EASE DI | | SSIONS | | - | | | | ASED E | | BEST I A S | APPROACH | - | | S O | * For | | 3C-210 | | IANK | | | (IN LBS.) | 0016 | 8400 | | NOTE: INCREASE DISTANCE | | - L | GROSS TYPE
WEIGHT OF | IN LBS. CLIMB | 9100 FERRY | ВЩОО СОМВАТ | COMBAT | NOTE: INCREASED ELAPSED CLIMBING TIME | | - | GROSS APPR | IN LBS. MPH | 8400 95 | 7500 90 88 1450 950 | * SMS | | 100 | SPEC. 18,1942 | FORM ASC-511 | Σà | MODEL (S)
P-40 DRE | DE C | | | | | 5 | | 1 0 | OPERATION SHEET 1 | 0 | 0 0 | 300 | 25 0 | INSTRUCTION F 1 SHETS 7300 | : | CHART | F 8 | | E | EXTERNAL LOAD ITEMS | AL LO | NE OA | 0 | LEM | | |
--|---------------|------------------|-------------------------------|-------------------------|--------------------------|--------------|---------------------|-----------------------------|--------|---------|-------------------|------------|-------------------|--------------------|--------------------------------|----------------------|--------------------------------------|-----------------------------|--------------------------|-------|-----------|--------------------------|--|---|--------------------------------|--------------------------|---------|---------|---------|---------| | 1 | TI-O | - | | Position 1 | - | | DURATION
IN MIN. | - | a.p.H. | or less | than t | de Foi | Pount of | CHART
fuel in a | : Select | figure | in fuel
horizont | column
tally to | the right | | e in to | we incr | cy. (B) | Columns
ange at | (II, III, sacrifice | IV & VI | d. (C) | Manifok | Press | ord and | | Column C | MITA | | | | | | 2 | - | 011 | flown. | Vertic | ally be | low and | opposi | to desir | ed cru | ising ah | titude n | do pos | | rence. (I |) For q | uick ref | prence, to | ske-off a | nd milit | ary pow | er data | are lis | 1 | | Column C | 1 | - | 1710-39 | - 1 | 3R) | | | | | | | 2000 | Hone. Pa | 1 : : : ! | Dio A | Commi | nons cue | u Bund | - ONE MILE | | adds a | | 5 | Cuell. | | | | | | | | Column C | | | | 2 | | (QN | | | • | - | | • | 144 | | S | | | Z | I | Z | | | (NO | RESERV | 'E FUEL | | WANCE | 9 | | | | 10 10 10 10 10 10 10 10 | - | (MAX. | | | ER) | FUE | 113 | | = | | | | | | = | | | | | = | | | | FUEL | | | | RANGI | 9 | | | NATIONAL SALVINE NATIONAL SALVINE NATIONAL STATUTE STATUTE NATIONAL STATUTE STATU | | RAMGE | Ξ | MILES | | , D | · s | RAN | Ξ | | | | * | | | | | | RAN | Ξ | AIR M | 118 | | IMP. | | RANG | Ξ | IR MIL | | | | 192 285 126 126 285 126 285 | S | TATUTE | | NAUT | CAL | - | 4 | STATUTE | 1 | MA | TICAL | | STA | TUTE | | NAUT | CAL | | STATUT | | N | UTICA | | GALS. | ST | ATUTE | | NAL | JTICAL | - | | 100 206 110 350 340 340 450 560 550 560 550 560 | .T S.L. | | | - | 3,00 | - | | | | ਨ | 3 0.5 | | Imp.) | Gallo | | | ilable | | light. | | | | | | | | | | | | | 100 2.60 100 3.50 3.40 4.50 4.50 5.50 4.50 5.50 4.50 5. | | 35 | 10 | | 285 | | | 425 | | | 370 | | 56 | 35 | | 45 | 00 | - 1 | 630 | | | 550 | | 88 | | 200 | | • | 010 | | | 190 165 120 250 215 235 235 245 215 | | 8628 | 001010 | | 260
235
210
190 | | 0000 | 350
350
285
285 | | | 340 | | 3442 |
2020 | | 4400 | 0000 | | 525
475
420 | | | 500
455
410
365 | | 88162 | | 645
585
525
470 | | 2,2,44 | 100 | | | Solution | | 000- | 02020 | | 165 | | 0605 | 250
210
175
140 | | | 215
185
155 | | 6666 | 355 | | 1222 | 55555 | | 370
315
265
210 | | | 320
275
230
185 | | 8888 | | 4-0
350
235
235 | T BEE | minida | 555 | | | Las. | | @ KD KV | 200 | | 70 45 25 25 | | 005 | 105 | | | 30 | | 200 | 1000 | | I | 25 | | 105 | | | 135 | | 18 <u>1</u> -0 | | 175 | | | 50 | | | LAS. | | OPER | ATING | DATA | - | Θ | - | OPE | | IG DA | TA | | | DPERA | TING | DATA | 1 | - | 0 | ERATI | NG D | MA | | Θ | | OPE | RATIN | G DA | T. | | | 30000 2500 | P.W | IAS. | LA.S. | - | - | | | | | - | | | | | | | - | | | | Σz | | N O C X | ALT. | R.P.M. | | I.A.S. | Σz | 3 0 × ± | | | 256 222 38.5 112 83 12000 2450 229 199 31 85 71 2390 216 187 28 60 50 210 203 176 27 51 42 12000 180 189 150 188 163 265 220 231 231 230 234 232 235 2 | | | | | | 300 | 888 | | | | | | | | | 3/7 | 2.0 | | | | | | | 30000
25000
20000 | 181 | | | | | - | | 255 222 38.5 12 20 | 2600 | - | - | | | | | | - | | 85 | 7.1 | 2300 | - | 187 | - | | | | | | | 42 | 15000 | 1000 | | | | | | | 263 229 38.5 12 58 58 5000 2150 241 209 34 78 85 2250 217 188 28 59 49 1050 206 179 28 45 59 6000 1800 181 157 26 25 2250 217 188 28 50 42 1050 204 177 28 47 300 1800 1800 177 154 26 25 217 188 28 50 42 1050 204 177 28 47 300 1800 177 154 26 25 217 188 28 28 20 217 188 28 20 217 188 28 20 207 175 28 20 217 207 | 2600 | | 222 | 30 00
00 00
00 00 | | - | | | | | 83 | 68 | 2300 | | 187 | | | | | | | | 14 | 12000 | 1800 | | | | | | | 256 231 38.5 106 38 S.L. 2150 214 212 34 75 83 2250 217 188 28 50 42 1050 204 177 28 47 36 3000 1800 177 154 26 2250 217 188 28 48 40 1050 203 176 28 40 39 S.L. 1800 177 154 26 2250 217 188 28 48 40 1050 203 176 28 40 39 S.L. 1800 177 154 26 2250 217 188 28 48 40 1050 203 176 28 40 39 S.L. 1800 177 154 26 2250 217 188 28 28 48 40 20 203 176 28 40 39 S.L. 1800 177 154 26 2250 217 188 28 28 28 28 28 28 2 | 2600 | - | 229 | 38.5 | + | - | - | - | - | | 78 | 92 | 2250 | - | 188 | 1 | + | | | - | - | - | 300 | 9009 | 180 | | - | | - | + | | (1) INDICATED ALTITUDE CORRECTED FOR FREE AIR TEMPERATURE. (2) ALLOW 28 U. S. GALS. 23 IMP. GALS. FOR WARM UP. TAKE-OFF AND CLIMB TOSOLOMER TO _ | 2600 | | 231 | 30 00 00 | | | 0 | | | | 75 | 60 | 2250 | | 188 | | | | * | | | | 39 | 3000
S. L. | 1800 | | | | | | | | -mamzo | OO ALLO
TAKE. | W 28
OFF AND
IN FUEL FI | CLIMB | S. GALS
TO SAIS | 23
000 FE | FREE AIR INP. C | TEMPERAT
SALS. FOR
DE | URE. | U. | | | | - 350 | OLD NU
IGHT NUA
VITH TWC | MBERS: UBERS: USPEED | Use Auto-la
BLOWER:
7y line on | te-Rich
Lean
Use high | | | | M. U.S. | S.: Indic
G.P.H.:
G.P.H.:
Full Th | ated Air Sold Pressure J. S. Gallo Imperial Grottle | peed
(In. Hg)
ins Per Ho | Hour | | | | | RED FIGURES ARE PRELIMINARY: SUBJECT TO REVISION AFTER FLIGHT CHECK | Table Tabl | EC. AN-H-8
C. 18,1942 | SEM ASC-511 | ×4 | MODEL (S)
P-400, E | (S) | | | T. | FLIGHT | | PER. | OPERATION
SHEET. J. | | INSTRUCTION OF 2 SHETS | 5 | CTIO | | CHART | | | EXT | RN | EXTERNAL LOAD ITEMS | OAL | = 0 | MS | | |--|--------------------------|--------------------------|-------------------------------|--------------------------|-----------------------|----------------------|--------------------------|------------------|-----------|-----------------|-----------|--------------------------|---|---|----------|-----------|--------------------------|-------|------------------------|--------------------------|---|---|---------------------------|--------------------------|----------|---|---------| | 1000 45.5 - | 30
DITIONO | : | M.P. | BLOWER | MIXTURE | DURATION | U.S. | 2 | M. | 0 | | | To | 830 | 0 | | | Pour | |
ONE | 520R75GALBELLYTANK QR
500 LB. BOMB | .75
BOM | GAL | BELLY. | TANK | DR. | | | 10 14 5 5 1 15 1 10 1 10 1 10 1 10 1 1 | TAKE-OF | 1. | 45.5 | 1 | A R | 2 | 011 | 117 | or less t | han tot | al amount | t of fuel | n airpla | ne. Mov | e in tue | mtally to | the right | | ept in e | ve incre | cy. (B) C | olumns and s | III, III, I | V & V | (C) Ma | the right | tessure | | In V- 710-39 F-38 | POWBE | | # | 1 | | 2 | + | 011 | flown. | and selfertical | r below | and opp | osite de | greater
sired ar | than th | e air m | iles to be
read op | | P.), Gall
rence. (L | Ons Per
O) For qu | Hour (C | P.P.H.), | are app | voximate
d militar | y power | data ar | o lish | | Column C | | - | 710-39 | (F-3 | 1R) | | | | timom c | ruising | condition | . NOTES | (A) Ave | sid conti | mous cr | vising in | Colemn | _ | eddn ey | r left co | mer of c | hort. | | | | | | | NATIONAL | | | | W ON) | (QNI) | | | ~ | 17 | Z | - | 2 | - 5 | Z | U | Z | F | Z | | | (NO | RESERVE FUEL | | ALLOWANCE | ANCE) | | | | NAME | 8 | | CONT. P | OWER) | FU | 11 | | = | | | | | H | | | | | - | | | - | FUEL | | N) A | (MAX. RA | RANGE) | | | NAUTICAL CALL CAL | | | AIR | 111.85 | j
j | s. | RAM | = | IR MILE | 8 | | RANG | × | | 18 | | RAN | Z | AIR | LES | | IMP. | - | RANGE IN | | AIR MILES | | | 1,000 March Marc | | ATUTE | | 3 | | 25 | STATUTE | - | MAU | ICAL | | STATUTE | | NAU | TICAL | | STATUL | ш | NA | UTICAL | | SALS. | STA | STATUTE | | NAUTICAL | 3 | | 120 | AT S.L. | AT 9000 | | T | | 00 | | (7) | 30 U.S | | |) Gall | | | vaila | _ 0_ | | ght. | | | | 107 | | | | | | | 395 345 160 425 455 710 626 560 735 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 65 | | 420 | | 36 | | 02 | 555 | | 4.6 | 2 | | 755 | | 65 | 2 | | 835 | | | 725 | | SH S | α | ROF | | 780 | | | Stock Stoc | | 395
370
345
320 | | 345 | | 20000 | 525
490
460
425 | | 3446 | 0000 | | 710
665
625
580 | | 588 | 0000 | | 785
735
685
635 | | | 680
640
595
555 | | 8228 | 8776 | 845
740
740 | | 730 | | | 175 150 170 280 225 310 270 315 315 320 315 320 315 320 315 320 315 320 325 320 315 320 325 320 320 325 320 320 325 320 | | 300
275
225
225 | | 266
235
215
185 | | 0000 | 390
325
295 | | 2000 | 0000 | | 535
490
400 | | 3388 | 2020 | | 590
040
040
040 | | | 510
470
425
385 | - | 2888 | 20002 | 635
580
525
175 | | 550 | | | LAS. LAS. M.P. U.S. IM.P. LAS. LAS. M.P. U.S. IM.P. U.S | | 200
175
150 | | 130 | | 80
20
20
20 | 260
230
195
165 | | 202 | 0000 | | 355
310
255
225 | | 2370 | 00010 | | 390
345
295
245 | | | 340 300 255 | | 5283 | # m m c | 420
370
315
265 | | 365 320 275 275 | | | 1.45. 1.45. M.P. 0.5 | | OPERA | TING DI | ATA | 0 | | OPE | | | - | | OPE | MILL | | V | | OP | RATI | 1 | TA | - | Θ | | OPERATING | | DATA | | | 2000 25000 2 | | | | 200E | | | | | | | | | | | | | | | | | | | R.P.M. | LA.S. | LA.S. N | M. N. | 2002 | | 220 191 F.T. 98 82 15000 2450 2415 183 31 86 72 2300 108 172 28 90 40 2100 185 161 27 234 203 38.5 112 83 12000 2300 215 187 32 83 69 2300 200 174 28 57 48 2000 191 166 28 242 210 38.5 112 93 6000 2150 220 191 33 81 67 2200 107 171 28 57 44 1950 189 165 28 248 211 38.5 112 93 6000 2150 223 193 34 78 66 2200 107 171 28 57 44 1950 189 165 28 249 214 38.5 112 88 5.L. 2150 224 194 34 75 62 2200 107 171 28 77 47 1950 188 165 28 240 214 38.5 112 88 5.L. 2150 244 194 34 75 62 2200 107 171 28 77 79 1950 188 165 28 34100ATED ATTIVIDE CORRECTED FOR PIER ATT EMPERATURE. | | | | 7 F | 300
250
200 | 0 0 0 | | | | | | | | | | | | | | | - | 30000 | | 6 | | 1 | | | 242 210 38.5 12 93 12000 2300 215 187 32 83 69 2300 2774 28 57 46 2000 101 156 28 28 242 210 38.5 16 97 9000 2150 220 191 33 81 67 2300 107 171 28 57 44 1050 109 105 28 28 246 214 38.5 10 9 91 3000 2150 225 195 34 75 62 2300 107 171 28 57 42 1050 188 163 28 200 107 171 28 57 42 1050 188 163 28 28 246 214 38.5 10 9 81 3000 2150 225 195 34 75 62 2300 107 171 28 47 300 107 105 28 28 20 100 107 171 28 27 30 100 107 172 28 28 20 100 107 172 28 28 20 1000 107 107 20 107 107 20 107 20 107 20 | 009 | | _ | 6:6 | - | | | 183 | 3. | - | | - | 172 | 88 | - | | - | - | | N. | - | 15000 | 1050 | 241 | 3 | 1 | 1 | | 245 211 38.5 112 99 6000 2150 223 193 34 78 66 2200 108 172 28 51 42 1950 188 163 28 28 246 214 38.5 106 88 5.L. 2150 224 194 34 72 60 2200 107 177 28 47 39 1000 187 162 28 6 1000 187 162
28 6 1000 187 162 28 6 | 009 | | | 112 | | | | | 33 | | | | 174 | % % | | | | | | | | 12000 | 1850 | 178 | 155 | 3 6 | 43 44 | | 246 214 39.5 109 91 3000 2150 225 195 34 75 62 2200 100 173 28 10 42 1000 187 162 28 246 214 38.5 106 88 5.L. 2150 224 104 34 72 60 2200 107 171 28 47 39 1000 187 162 28 () INDICATED ALTITUDE CORRECTED FOR FREE AIR TEMPERATURE. | 009 | | | 112 | - | - | | 193 | 3# | - | | - | 172 | 80 | - | - | - | - | 1 | - | - | 0009 | 1000 | 175 | 152 | + | 40 | | (1) INDICATED ALTITUDE CORRECTED FOR FREE AIR TEMPERATURE. (2) ALLOW 30 U.S. GARS. 25 THE CALS FOR WARM ITS THOUGHT MIMMERS. ILL AND LAND. | 009 | | - | 901 | | | | | | - | | | 173 | 8 % | | | | | | 2 6 | | 3000
S. L. | 1800 | 171 | 148 | 7 9 7 | 8 98 8 | | TAKE-OFF AND CIUMB TO SOUT FEET ALTITUDE RETURN FUEL FLOWS TO TANK | | ALLOW TAKE OF | ED ALTITUI
30
F AND CLI | U. S. GAL
MB TO 5 | CTED FOR 25 25 000 FE | FREE AIR IMP. G | TEMPERATI | JRE.
WARM UP. | | | | | BOLD N
LIGHT NL
WITH TH
blower o | UMBERS:
IMBERS: (
YO SPEED
bove hear | Use Auto | 1 .9 | | | | I.A.S
U.S.G
IMP. | 1.4.3.: Indicated Air Speed M.P.: Manifold Pressure (In. Hg) U.S.G.P.H.: U. S. Gallons Per Hour IMP.G.P.H.: Imperial Gallons Per Hour | d Air Spe
Pressure (
Gallons
terial Gall | ed
In. Hg)
Per Hour | | 255 | | 7 | REFER TO "SPECIFIC ENGINE RIGHT CHART" FOR ADDITIONAL ENGINE OPERATION DATA. RED FIGURES ARE PRELIMINARY: SUBJECT TO REVISION AFTER FLIGHT CHECK | STATUTE I. (MAX. CO 4 17 1 10 1 1 1 1 1 1 1 | 18,1942
18,1942 | | MODEL (S)
P-40 & E | FF | (2) | | | | FLIGHT | H | 0 % | OPERAT
SHEET. 2 | 9 | 0 | N INSTR | | UCTIO
SHEETS | | CHART | RT | | <u> </u> | EXTERNAL LOAD ITEMS | 1× | 0 | AD I | TEM | S | |---|--------------------|--------------------------------|-----------------------|--------------------------|-------------|--------|--------------------------|----------------|--------|--------------------------|---------|--------------------|-----------------------------|--------------------------|--------------------|-------------------------|-------------------------------------|--------------------|-------|----------|-------------------|-----------------------|------------------------|---|--------------------------|----------|----------|---------| | 1.00 | | | | | | | | | | | 000 | : | | .TO. | 30 | | | : | . Po | NDS | NO | | or 75 | Gal. | BELI | Y TA | NK. or | | | 1000 | соментом | | HG) POSITIO | | | _ | U.S.
G.P.H. | IMP.
G.P.H. | INS | TRUCT | ONS F | DR USIN | IG CHA | RT: Sel | et figur | e in fue | H colum | in equal | | xcept i | n emer | ency. (| 3) Colum | ns (II, III | . IV & | V) towo | at be | right p | | 2000 U.S. L. A.R. S. 122 110 | TAKE-OFF | 3000 45 | | A | | 2 | 011 | 117 | 2 2 | ess that | lotot i | amount o | i leut to | n airpla | me. Mon | then th | ontally . | to the rig | | M.P.J. C | y give ii | Per Hou | n range | or socrific | ce in sp | eed. (C) | Manifol | d Press | | Column C | MALTARY | | | A | | 2 | 132 | 110 | - F | vn. Ver | ically | below a | ddo pu | site de | Bired c | ruising | altitude | p poer | | eferenc | e. (D) Fo | r quick | eference. | take-off | and mil | itary po | wer date | are lis | | Column C | (5) 300000 | V-1710- | | 8 | | | | | Thm. | um cru | ing co | diffions. | MOTES | A Av | moo pid | moors c | Summa | n Colore | | 900 | abec les | comer | or chart. | | | | | | | Inclusion Incl | | | | WINE | 3 | | | | - | 168 | Z | - | ac. | DIS | | U | 2 | DITI | 0 | | | 6 | | RVE FUI | EL ALLO | DWANC | E) | | | Name in a market | - | | | 2 | FUEL | _ | | | = | | | | | = | | | | | | IV | | | FUEL | | | (MAX. | RANG | (3) | | Name | . R. | = | IR MILES | | U. S. | | RAB | - | AIR | MILES | | | RANG | H | IR MIL | ES | | RA | | | MILES | | IMP. | | RAN | | AIR MI | 587 | | 19 | STAT | UTE | NAUTIC | AL | _ | - | STATU | TE | - | MAUTIC | N. | 5 | TATUTE | | MAL | TICAL | | STATI | UTE | | NAUTI | TAL | SAS: | | STATUT | | NA | UTICA | | 326 326 140 140 140 320
320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 | AT S.L. A | 1 1 | S.L. | 9,000 | - | | | | | U.S. | | | | Ions | | | lati | | flig | ht. | | | 30 | | | | | | | SECTION Color Co | | 350 | | 305 | 170 | | 1160 | | | 400 | | | 625 | | 10 1 | 00 | | 70 | 0 | | 603 | | 117 | | 785 | | | 089 | | 10 10 10 10 10 10 10 10 | | 325 | | 285 | 130 | | 425 | | | 370 | | | 280 | | 20 | 00 | | 69 | 0 | | 263 | | 108 | | 130 | | | 035 | | 175 176 | | 300
275
250
225 | | 260
240
220
195 | 0000 | | 330
380
325
295 | | | 340 | | | 535
1430
1445
1400 | 5 36 | 4400 | 855
50
50 | 7 a | 800
800
1450 | 0000 | | 520
473
390 | | 0 5887
5 588 87 | | 675
615
560
505 | | | 1835 | | 100 65 30 100 130 130 130 130 135 135 135 150 150 130 130 130 130 135 135 135 135 130 130 130 130 135 | | 200
175
150
125 | | 150 | 900 | | 260
230
195
165 | | | 225
200
170
140 | | | 355
310
265
225 | | 2001 | 10
30
95 | | 2333 | 0000 | | 305 | | P8885 | | 450
335
280
280 | | | 3300 | | LAS. I.A.S. M.P. U.S. M.P. U.S. M.P. U.S. I.A.S. I.A.S. M.P. U.S. I.A.S. I.A.S. M.P. U.S. I.A.S. I.A.S. M.P. U.S. I.A.S. I.A.S. M.P. U.S. I.A.S. | | 100
75
50
25 | | 85
65
20 | 2002 | | 130 | | | 115 | | | 135
30
45 | | 1 | 155 | 77.77 | 200 | 0000 | | 130 | | 23 - 23 | | 225
170
110
55 | | | 195 | | LAS. LAS. M.P. U.S. IMP. | 0 | PERATIN | DAT | | Θ | | 0 | ERAT | | DATA | | | OPE | MILL | | TA | | 0 | PERA | TING | DATA | | Θ | | 0 | ERATII | | TA | | 222 193 FT. 98 82 15000 2500 | | | ₩ | - | | | _ | | - | - | - | R.P.M | | | | 2.0 v. z. | 3.000 | | | | - | - | _ | | | | | | | 222 193 F. T. 98 82 15000 2500 216 188 31 88 73 2300 203 176 28 60 50 2100 191 166 27 51 43 15000 1900 172 149 25 236 205 38.5 112 38 12000 2300 220 191 32 84 76 3300 204 177 28 58 46 2000 196 170 28 50 42 12000 1800 170 149 25 245 213 38.5 112 37 6000 2150 225 195 34 79 68 2200 203 176 28 53 44 1900 193 167 28 45 38 6000 1800 172 149 25 248 215 38.5 112 37 6000 2150 225 195 34 79 68 2200 203 176 28 53 44 1900 193 167 28 45 38 6000 1800 172 149 25 249 215 38.5 110 37 3000 2150 227 197 34 76 68 2250 203 176 28 63 1900 191 166 28 45 35 3000 1800 161 140 25 249 216 38.5 110 37 3000 2150 227 197 34 76 68 2250 203 176 28 64 1900 191 166 28 62 35 3000 1800 158 140 25 249 216 38.5 110 37 3000 2150 227 197 34 76 68 2250 203 176 28 64 1900 191 166 28 62 35 3000 1800 161 161 161 161 161 161 161 161 161 1 | | | | | 2500 | 888 | | | | | | | | | | | | | | | | | 3000
25001
20001 | 000 | | - 32 | | | | 246 205 38.5 112 88 12000 2 250 191 3 2 84 77 2 28 5 6 46 2000 1 0 6 170 2 8 5 0 4 2 12000 1800 1 7 2 149 2 5 248 215 38.5 112 \$7 9000 2 150 2 25 195 3 4 8 2 6 8 2 2 0 0 2 0 2 1 7 5 2 8 5 7 4 6 190 0 1 9 3 1 6 7 2 8 4 7 3 9 9000 1800 1 7 2 1 4 9 2 5 249 216 38.5 112 \$7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 | | 2 19 | F. T. 9 | 80 | 1500 | - | | 9 | 60 | - | 7 | _ | 20 | 176 | u | 0 | - | - | 16 | 991 | _ | 7 | | _ | | | а | 41 | | 245 211 38.5116 \$7 9000 2150 225 195 34 82 68 2200 202 175 28 55 46 1950 103 167 28 47 99 9000 1800 172 149 25 248 215 38.5112 \$7 6000 2150 227 197 34 78 68 2200 203 176 28 59 44 1900 193 167 28 45 38 6000 1800 1800 16 140 25 249 215 38.5106 \$8 5.L. 2150 227 197 34 78 68 2250 203 176 28 50 42 1900 191 166 28 42 35 3000 1800 161 140 25 249 215 38.5106 \$8 5.L. 2150 227 197 34 78 68 2250 203 176 28 40 1900 191 166 28 42 35 3000 1800 161 140 25 249 215 38.5106 \$8 5.L. 2150 227 197 34 78 68 2250 203 176 28 40 1900 191 166 28 40 39 5.L. 1800 158 137 24 3 ALLOW 26 U. S. GALS. 22 IMP. GALS. FOR WARM UP. TWO SPEED BLOWER: Use high FIRMS FOR UNINE TO SEED BLOWER: Use high FIRMS FOR UNINE TO SAND FOR THE PROPER ATTITUDE TAKEN FOR IN INDECREE ATTITUDE TO SAND FEET ALTITUDE T | | 6 20 | 38.5 | 60 | 1200 | _ | | _ | | 90 | | _ | | 177 | | 58 | | | 96 | 041 | | | | _ | | | - | 39 | | 246 213 88.5 12 87 6000 2150 225 195 34 79 68 2200 203 176 28 53 44 1900 193 167 28 45 38 6000 1800 168 146 25 248 215 38.5 10 81 3000 2150 227 197 34 76 63 2250 203 176 28 60 190 191 166 28 42 35 3000 1800 161 140 25 249 216 38.5 10 88 5. L. 2150 227 197 34 76 63 2250 203 176 28 40 1900 191 166 28 40 39 5. L. 1350 161 140 25 3 ALLOW 26 L. S. CALS. 22 IMP. GALS. FOR WARM UP. TWO SPEED BLOWER: Use high FIRE FOR THE FORM | - | 43 2 | 38.5 | 0 | 900 | - | 2 | 25 | 20 | an an | - | - | | 275 | - | 5.5 | | - | 66 | 191 | | 7 | | - | - | | + | 37 | | 248 215 38.5 10991 3000 2150 227 197 34 76 63 2250 203 176 28 50 42 1900 191 166 28 42 35 3000 1800 101 140 25 249 216 38.5 106 68 5.L. 2150 227 197 34 73 61 2250 203 176 28 48 40 1900 191 166 28 40 39 5.L. 1800 101 140 25 3 ALLOW 26 U. S. GALS. 22 IMP. GALS FOR WARM UP. TWESTED ALITHUDE TAKEOFF AND CHAIR INPOSED FOR FIRE ALITHUDE FOR MANY AND ALICH FOR STATE AND PROPERTY INPOSED BLOWER: Us high FOR MANY AND ALICH FOWS TO TANK FOR WARM AND ALICH FOR WARM FOR MANY | | | 60 | 1287 | | | | - | | _ | | | 20 | 176 | | 53 | | | | 191 | | | | _ | | | | 35 | | (1) INDICATED ALTITUDE CORRECTED FOR FREE AIR TEMPERATURE. (2) ALLOW 26 U. S. GALS, 22 IMP. GALS, FOR WARM UP, WITH TWO SPEED SHOWER. Use high BETURN FULLE FLOWS TO TANK | | |
 | S 100 | | | | | | · · | | | | 170 | | 20 8 | | | | 166 | | | | - | | | | 30 | | ALION DE LOS | | INDICATED ALLOW 26 TAKE-OFF AN |
NLTITUDE CO | GALS. | 22
0 FEE | IMP. G | TEMPER
SALS. FC
DE | ATURE. | UM UP. | | | | | BOLD
UGHT I
WITH I | NUMBERS
WO SPEE | 15: Use Auril 15: BEOWI | Auto-Ric
to-Lean
ER: Use only | 4 dgis | | | | M.P.: Me
U.S.G.P.A | nifold Pres | r Speed
sure (In. H
allons Per
I Gallons F | Hour
Per Hour | | | | REFER TO "SPECIFIC ENGINE FLIGHT CHART" FOR ADDITIONAL ENGINE OPERATION DATA. RED FIGURES ARE PRELIMINARY: SUBJECT TO REVISION AFTER FLIGHT CHECK #### SECTION IV #### OPERATION OF OXYGEN EQUIPMENT #### 1. Operation. \underline{a} . Oxygen will be used when operating above 12,000 feet pressure altitude. <u>b</u>. The pilot's oxygen mask nose may have a rubber bayonet or metal connector. Be absolutely sure that the mask connector will fit the regulator output connection before starting the airplane's engine. c. The airplane low pressure oxygen bottle is located in the aft part of the fuselage and is accessible through the fuselage access door. (See figure 2.) It is satisfactory for take-off if the gage attached to the neck of the bottle shows a minimum of 300 pounds. The bottle is equipped with a shut-off valve which should be opened before and closed after each flight to prevent possible leakage. d. Oxygen flow to the pilot is controlled by a regulator located in the floor of the cockpit to the right of the pilot. A small knob for adjustment and a gage calibrated in thousands of feet for flow indication are provided. When oxygen is being taken by the pilot, the knob should be adjusted so that the gage registers equal to the pressure altitude at which the airplane is flying. Some pilots require more oxygen than others and the flow should be increased if the pilot feels any extremity of his body (lobes of the ears, feet or fingers) lacking in sensitiveness or has any tingling sensation. #### 2. Oxygen Duration. a. Type F-1 cylinder weighing 7 pounds will supply oxygen for one man as follows: 2-1/4 hours at 25,000 feet with a type A-9A regulator 2-3/4 hours at 25,000 feet with a type A-9 regulator #### SECTION V #### OPERATION OF COMMUNICATIONS EQUIPMENT #### 1. Radio Set SCR-283 (P-40D Airplane). #### a. Receiver Operation. - (1) The radio receiver is located in the aft part of the fuselage and is accessible through the fuselage access door. (See figure 2.) All tuning dials and switches are located in the pilot's cockpit along the upper right longeron. (See figure 9.) - (\underline{a}) The receiver may be identified by a large 0-100 calibration dial on the front end. - (b) Spare coils for change of receiver frequency tuning range are mounted near the receiver and may be identified the same way as for the receiver. - (2) Turn ignition switch (figure 10) to "BAT." warning If the airplane is on the ground and the engine is not running, be sure that the switch is NOT on "L" or "R." (3) Turn receiver volume control selector switch (figure 9) to "MANUAL." Plug phones in jack, and turn volumn control knob (figure 9) to the right until a faint frying noise is heard in the phones. Automatic volume control may be used by setting the selector switch (figure 9) in "AUTO"; this setting is most suitable for hunting a signal. CAUTION: For all normal (voice or MCW) reception the radio receiver crystal filter selector switch (figure 9) should be set at "BOTH." To receive the radio range without possibility of voice interference, set the selector switch to "VOICE." It is impossible to receive voice when this selector switch is set on "RANGE." #### (4) Reception at Different Frequencies. - (a) To receive the U. S. Airways Radio Range 210-398 kilocycles, set the "HI-LO" selector switch (figure 9) at "LO." Refer to CAUTION under paragraph 1.a.(3) above. Adjust tuning dial knob (figure 9) for desired frequency as calibrated on the scale closest to the center of the tuning dial. - (b) Provisions are made for plugging in different coils to cover almost every range of frequency practicable and available for aircraft use. The frequency range in kilocycles, along with the coil-identifying number, is fixed to the handle of every "plug-in" coil. Before starting the airplane's engine, the pilot should check the coil in his receiver, and if its range in kilocycles does not include the desired frequency, the proper coil should be inserted. (c) For tuning the receiver to any frequency other than the radio range band regardless of the coil that is in use, always set the "HI-LO" switch (figure 9) to "HI." If the frequency range of the coil in the receiver matches the rear (outer) scale frequency calibration on the tuning dial in the cockpit, the tuning to any frequency within the dial calibration will be by direct reading in kilocycles. If the coil does not match the rear (outer) scale on the tuning dial, the intermediate (middle, 0-100) scale will be used for tuning. In this case, there will be found a metal "Frequency in Kc" calibration chart fixed in every cockpit near the tuning dial. Frequency in kilocycles for different coil numbers is plotted on this card against the 0-100 center tuning dial scale. When tuning to any desired frequency in kilocycles, use the vertical column on the card that is headed by the same coil number that is plugged into the receiver, and set tuning dial scale (center scale) at the number found opposite the frequency desired. #### (5) To Receive Code (CW). - (a) Straight continuous wave signals cannot be heard on this receiver, as it is not equipped with a beat frequency oscillator. - (b) Modulated CW signals (similar to the airways course signals) may be heard by this receiver by tuning in the same manner as for voice reception with the radio range filter selector switch (figure 9) set on "BOTH" or "RANGE." - (c) The receiver may be turned off by setting the control knob (figure 9) in the "OFF" position. <u>CAUTION</u>: If there is no further use of electrical equipment in the airplane, turn the ignition switch (figure 10) "OFF" before leaving the cockpit. #### b. Transmitter Operation. (1) General. - The transmitter is located in the aft part of the fuselage and is accessible through the fuselage access door. (See figure 2.) All controls and switches are located in the pilot's cockpit along the upper right longeron. (See figure 9.) #### (2) To Transmit Voice Signals. - (a) If airplane is on the ground and the engine is not running, turn ignition switch (figure 10) to "BAT." - (b) Turn transmitter master knob (figure 9) "ON," and allow the transmitter to warm up at least 1 minute before attempting to transmit. - $\frac{1}{9}$. Set transmitter emission control switch (figure $\frac{1}{9}$) to "VOICE." - 2. To talk, hold microphone directly in front of and within 1/2 inch of the lips, press the button on the rear side, and speak slowly with clean, sharp distinct words. Release microphone button when transmission is ended. - warning If a throat microphone is used, it must be adjusted so that its two circular elements are held snugly against each side of the throat just above the "Adam's apple." SPEAK SLOWLY, DISTINCTLY, AND IN A NORMAL TONE OF VOICE. Shouting will seriously distort the voice signal. #### (3) To Transmit Code Signals (CW). - (a) Turn ignition switch (figure 10) to "BAT" if airplane is on ground and engine is not running. - (\underline{b}) Set transmitter emission control switch (figure 9) to "CW." - (c) Operate the transmitting key (figure 9) on top of the transmitter emission control switch box. - (d) When operating in code with any other airplane using the same model transmitting and receiving equipment, set the switch box selector switch (figure 9) to "TONE" and proceed as outlined above. - (e) The transmitting key may be adjusted for travel by regulating the thumb screw on the bottom of the box directly under the key. #### 2. Radio Set SCR-274-N (P-40E Airplane). a. Description. - The command set SCR-274-N is designed for short-range operation, and is used for communicating with nearby aircraft for tactical purposes and with ground stations for navigation and traffic control purposes. Three receivers and two transmitters are installed in the rear of the fuselage and are accessible through the fuselage access door. (See figure 2.) All dials and controls are located on remote control units located to the right of the pilot. #### b. Receiving. - (1) The receiver remote control unit is divided into three identical sections, each section controlling the particular receiver to which it is electrically and mechanically connected. Reception of a signal of a specific frequency as indicated on the dial is accomplished by the use of the section of the receiver control box which controls the particular receiver involved. - (2) Plug head-set phone jack plug in jack No. . Turn volumn control (figure 9) to the right until a faint "frying" noise is heard in the phones. - (3) Set crystal filter selector switch (figure 9) to "BOTH" for all normal (voice or MCW) reception. - (4) Turn switch (figure 9) on. This switch, in addition to having an "OFF" position, has two selective positions marked "CW" and "MCW," each of which is an "ON" position and indicates the type of signal which is to be received. NOTE: When tuning receiver for a definite frequency, always turn dial a little to each side of the frequency calibration mark to find the point where the signal is the strongest. (5) The A-B switches should be left in the "A" position at all times, and need not be turned off when the receiver is turned off. #### c. Transmitting. - (1) Before transmitting, adjust radio receiver to the same frequency as the station with which you desire to talk, and listen in to be sure that the operator is not talking to some one else. If the station is transmitting, take advantage of the opportunity to more accurately set the receiver on the assigned frequency, and when the other operator is finished, proceed with your transmission. - (2) Place transmitter master switch (figure 9) in "ON"
position. - (3) Select type of transmission desired with switch marked "TONE-CW-VOICE." (See figure 9.) - (a) With the switch in the "VOICE" position, voice will be transmitted when the push-to-talk button is pressed. - (b) With the switch in the "CW" position, a continuous wave, or unmodulated signal, will be transmitted. The microphone is inoperative. - (c) With the switch in the "TONE" position, a modulated tone signal is transmitted. The microphone is inoperative. NOTE: Greatest effective range can be obtained on "CW." Range is most limited when operating on "VOICE." Transmitting in both "CW" and "VOICE" positions is done by a key located on the end of the transmitter control unit. (d) To reduce battery drain and to increase dynamotor life, the "TONE-CW-VOICE" switch (figure 9) should be left on "VOICE" unless continued use on "CW" or "TONE" is expected. #### 3. Radio Set SCR-522A (P-40E Airplane). #### a. General. (1) This equipment is an ultra high-frequency (UHF) command set designed for voice communication only. It is used in conjunction with a contactor (pip squeak) for identification and navigational purposes. A remote control unit is located in the pilot's cockpit to the right of the pilot. - (2) The radio waves from this equipment travel in straight lines, like beams of light, and do not follow the curvature of the earth. Due to this fact, in order to receive signals from a ground station, it is necessary that an airplane be above a certain altitude which is determined by the distance of the airplane from the ground station. - (a) If the airplane is between 35 and 50 miles away from the ground station, it must be above 1000 feet before reception is possible. - (b) If the airplane is between 80 and 100 miles away from the ground station, it must be above 5000 feet before reception is possible. - (c) If the airplane is between 120 and 160 miles away from the station, it must be above 10,000 feet before reception is possible. NOTE: If the distance of the airplane from the station differs from any of the above examples, the altitude will change proportionately. (3) Excessive operation of this equipment on the ground must be avoided unless a battery cart is used to prevent running down the airplane's battery. #### b. Operation. (1) Press the proper channel button on the cockpit control box, for the frequency on which you are to transmit and receive to put the set in operation. NOTE: Transmission and reception take place on the same frequency. - (2) A green warning lamp adjacent to the channel button, pressed, lights up, whenever the set is in operation. - (3) A white pilot light adjacent to the toggle switch should light up indicating that the set is on "receive." - (4) For throttle microphone button transmission, place toggle switch in "REM" position. NOTE: "REM" (remote) was marked "V.O." on early control boxes. - (5) Press microphone button, press the throttle "push-to-talk" button, and speak in a loud voice with the microphone against your lips. The white pilot lamp goes out immediately indicating that the set is on "transmit." - (6) It is also possible to transmit by moving the control box toggle switch to the "T" position, instead of pressing the throttle "push-to-talk" button. However, it must be returned to either the "R" or "REM" position immediately after transmission is completed. - c. Dimmer. The set is turned off by pushing the "OFF" button. Indicator lamps on the control box are provided with a dimmer mask for night-flying. The mask is operated by movement of a small lever beside the "OFF" push-button. - 4. Pip Squeak (Contactor) Operation RC-96 (P-40E Airplane). - a. The pip squeak (contactor) can be used with either the SCR-274-N or the SCR-522-A command set. - <u>b.</u> When the contactor clock on the instrument board is turned on, the transmitter is in operation. It sends out a 14-second tone signal once every minute on channel "D" when used with the SCR-522 set and on channel "2" when used with the SCR-274-N set. Transmission of the signal occurs during the period that the hand is moving through the marked quadrant on the face of the clock. - c. Connect contactor clock to radio set by placing switch in the "IN" position. - d. Start clock by placing clock master switch in the "RUN" position. - e. When the clock takes over, the channel selector switch automatically goes to the proper channel and a continuous tone is heard both in the phones and on the ground for 14 seconds. At the end of the 14-second signal period, the selector switch automatically returns to the original channel. WARNING It is impossible to transmit or receive voice during the 14-second tone signal period. #### SECTION VI #### ARMAMENT EQUIPMENT #### 1. Bombing Equipment. Six bombs may be carried externally, three below each wing. To release them electrically, place selector switch (figure 10) in the "ON" position and press the trigger switch on the control stick grip. They may be manually released by placing the bomb release handle (figure 8) in the full forward position. If a 300-or 500-pound bomb is carried instead of a belly tank, it can be dropped by pulling belly tank release handle. (See figure 8.) #### 2. Gunnery Equipment, P-40D Airplane. a. General. - Two .50-caliber fixed machine guns are mounted in each wing panel, and fire clear of the propeller arc. They are charged by placing the control valves (figure 8) in the "ON" position. Should the electric hydraulic pump fail, pressure may be retained by use of the auxiliary hand pump. (See figure 9.) Structural provisions are made for external attachment of two 20-mm cannon, one on the bottom surface of each wing. A miniature gun camera may be mounted on the gun sight. #### b. Operation. (1) The guns are fired by placing the selector switch (figure 10) in the "ON" position and pressing the trigger switch on the control stick grip. All guns are either "ON" or "OFF." - (2) To operate the gun camera, place the gun camera safety switch (figure 10) in the "ON" position and press the trigger switch on the control stick grip. - (3) To operate the electric gun sight, open the cover on the sight lens (figure 11), turn ignition switch to "BAT" and adjust rheostat control (figure 10) until the sight lines can be seen by looking through the small reflection glass centrally located just behind the windshield in line with the pilot's eyes. #### 3. Gunnery Equipment, P-40E Airplane. - <u>a. General.</u> Three .50-caliber machine guns are mounted in each wing panel, and fire clear of the propeller arc. No provisions are made for the installation of cannon. The installations of the gun camera and gun sight are the same as for the P-40D airplane. - \underline{b} . Operation. Operation of the guns, camera, and gun sight is the same as for the P-40D airplane. Refer to paragraph 2.b. above. Figure 11 - Gun Sight and Gun Camera Installed #### APPENDIX I #### GLOSSARY #### U.S. Air field Battery storage Beam, landing Ceiling Course Empennage Filter, air Glass, bullet proof Gyro, directional Horizon, gyro (to) Land Lean Left (to) Level off Line handling Line, Mooring Mast radio Nose-heavy Pressure Manifold P-40D, -E Reticle Right Roll, snap Set, command Speed, indicated air Stabilizer, horizontal Stabilizer, vertical Tab, trim Tachometer Tube, radio Wing #### BRITISH Aerodrome Accumulator Approach beam Cloud height Track angle Tail unit Air cleaner Armour glass Gyroscopic turn indicator Artificial horizon (to) Alight Weak Port (to) Flatten out Handling guy Mooring guy Rod aerial Bow-heavy Boost pressure Kittyhawk I or IA Graticule Starboard Stick roll Pilot controller set Air-speed-indicator reading Tail plane Fin Trimming tab Engine speed indicator (E.S.I.) Valve Main plane #### APPENDIX II #### COLD WEATHER OPERATION #### 1. Engine Oil Dilution System. #### a. General. - (1) Oil dilution provides a method of diluting or thinning the engine oil with gasoline at the end of each engine run in order to facilitate starting the engine in cold weather. - (2) The engine oil should be diluted prior to stopping the engine when there is a possibility of the engine oil temperature dropping below approximately 5°C (41°F) during the period the engine is to be inoperative. #### b. Operation. (1) Maintain a speed of 800 rpm. If a higher speed is maintained, the oil temperature will exceed the maximum temperature limit set for the diluting period. Fuel vapor blown from the breather outlets to the exhaust stacks by the propeller blast also creates a great fire hazard. NOTE: It is impossible to dilute the engine oil unless the engine is running. - (2) Maintain the oil temperature below 50°C (122°F) during the dilution procedure. The ideal temperature is 40°C (104°F). If the oil temperature exceeds 70°C (158°F), the gasoline will evaporate as rapidly as it is introduced into the oil and will leave the oil with its original viscosity. If the oil temperature exceeds 50°C (122°F) when the airplane is landed, the engine must be stopped and the oil allowed to cool to approximately 35°C (95°F) before the engine is started again to accomplish oil dilution. - (3) Hold the oil dilution switch (figure 10) in the "ON" for about 4 minutes with an engine speed of 800 rpm. The engine must be stopped at the end of the dilution period by moving the mixture control (figure 8) to the "IDLE CUT-OFF" position. If a sharp decrease in fuel pressure is not noted during oil dilution, check the electrical oil dilution circuit, the oil dilution valve, and the pressure gage for the source of the trouble. #### 2. Portable Ground Heater (Type D-1). - <u>a</u>. When operating under freezing conditions and if weather conditions require preheating of the engine, use type D-1 portable heaters. - <u>b</u>. It requires approximately 15 minutes to heat up the engine at -17.8° C (0° F) and approximately 30 minutes at -34.4° C (-30° F). The heater is equipped with three flexible warm air ducts. c.
The heater weighs approximately 210 pounds, is equipped with two rubber wheels and a skid and is easily handled by one man. <u>CAUTION</u>: Whatever method is used for preheating the engine, extreme care must be taken to prevent accidental ignition of the gas fumes from the engine breathers, caused by vaporization of the gasoline in the oil. #### 3. Cold Weather Starting of Engine. When the engine is to be started for warm-up, or is to be repeatedly started and stopped for ground test purposes or "alert," the engine will be primed and the oil dilution system operated in accordance with instructions given in paragraph 1.b. of this section. warning In warming a cold engine in extremely cold weather, start with radiator shutters closed. Do NOT gun engine to more than 800 rpm until oil has reached a temperature of 40°C (104°F). #### 4. Batteries. Energizers or battery carts are generally used for cold weather starting, as this is more practicable than heating the batteries. Batteries should be maintained at not less than -12.2°C (10°F). Lower voltage at extremely low temperatures causes malfunctioning of all electrical equipment. NOTE: To safeguard battery, remove it from the airplane and store it in a heated place when the airplane is to be idle overnight. #### 5. Frost or Ice Removal. When it is necessary to remove frost or ice from areas of the airplane, melt a small area of the ice-covered surface at a time using hot water, then flush this area with denatured alcohol before the hot water freezes. Pay particular attention to hinges and controls. Alcohol should be used for cleaning frost off windshield and canopy. #### 6. Mooring. If, due to extreme cold weather, mooring stakes cannot be driven into the ground, use a pick or other sharp instruments and dig a hole approximately 8 inches deep and 8 inches square. Into this hole place two deeply notched stakes crosswise, and then tie the mooring rope to the stakes. Fill the hole with water which will freeze the stakes and rope fast. If stakes are unavailable, dig the hole, coil the rope in the bottom of it, and then fill with water. #### 7. Communications Equipment. The following equipment is adversely affected by extreme cold weather. Dynamotor. - The increased viscosity of bearing lubricants may prevent the dynamotor from starting, resulting in blown fuses. If this occurs, grease should be removed and oil substituted as a lubricant. Controls, Hand Switches, Etc. - Stiffness of operation may occur. Oil should be removed in order to prevent drag and binding. Batteries. - Cracking occurs around the edge of the case. Batteries should be kept charged above 1.290 specific gravity to prevent cracking. Microphones. - The hand microphone is unsatisfactory for use in cold weather. Moisture collects and freezes in the small holes of the microphone cap. Throat type microphones should be used for all cold weather operations. Transmitter. - In certain types of transmitters, frequency shifts occur with wide changes in temperature. Consequently the transmitter must be retuned and checked until a relatively stable temperature is reached. Plugs (Jacks). - Cracking occurs on type PL-54. No remedy can be effected. #### APPENDIX III #### EMERGENCY OPERATING INSTRUCTIONS #### 1. Emergency Take-off. If the oil was properly diluted when the engine was previously stopped, no trouble should be experienced in maintaining oil pressure within the limits set forth on the SPECIFIC ENGINE FLIGHT CHART in section III. However, the engine may be flown as soon as it will "take" the throttle, the oil dilution system being operated sufficiently to overcome oil pressure above or below the limits. There is very little danger of overdilution, so operate the system as the oil pressure gage (figure 10) indicates. Refer to paragraph 8. of section II for routine take-off procedure. #### 2. Engine Failure During Take-off. - a. Nose down immediately. - \underline{b} . Belly tank (if installed) Pull release lever immediately. - c. Mixture control "IDLE CUT-OFF." - d. Ignition switch "OFF." - e. Put nose of airplane well down and maintain a gliding speed of approximately 110 mph STRAIGHT AHEAD. CAUTION: LAND AIRPLANE ON ITS BELLY. DO NOT ATTEMPT TO LOWER LANDING GEAR. #### 3. Engine Failure During Flight. - a. Drop nose of ship immediately. - b. Ignition switch "OFF." - $\underline{c}.$ If belly tank is installed, pull release lever immediately. - d. Fuel selector valve "OFF." - e. Lower flaps manually with auxiliary hand pump. - \underline{f} . If a suitable landing field is available, the landing gear may be lowered. IF NOT, KEEP LANDING GEAR UP AND LAND AIRPLANE ON ITS BELLY. - 4. Emergency Take-off if Landing is not Completed. - \underline{a} . Open throttle and after propeller rpm has stabilized, increase rpm to 2800. - b. Do not retract flaps until above 500 feet. #### 5. Emergency Exit. #### a. In Flight. - (1) Canopy. An emergency canopy release handle is located on the upper forward beam of the canopy in front and above the pilot. To release the canopy pull down on it. This will break the lock wire on the release mechanism and the slip stream will tear off the canopy. - (2) <u>Kick-out Panel</u>. The kick-out panel on the left side of the canopy may be opened by pulling inward and aft on the release handle. - <u>b.</u> Turnover on Ground. The kick-out panel may be opened from the inside by pulling inward and aft on the release handle and pushing out on the panel. It may be opened from the outside by pulling outward and forward on the handle. #### 6. Emergency Operation of Landing Gear. a. If the electrical system doesn't work, the landing gear can be operated by placing the landing gear control handle (figure 8) in the desired position and then pumping the auxiliary hand pump. (See figure 9.) \underline{b} . Should the auxiliary hand pump fail, the landing gear may be operated by means of the emergency hydraulic hand pump. (See figure 9.) The emergency system may be operated by removing the handle from the auxiliary hand pump and placing it on the emergency hand pump. The hand shut-off valves on the floor of the cockpit must be opened before operating the emergency system. warning A "tail high" landing must be made when the emergency hydraulic system is used, as the tail wheel can not be moved by the emergency system. #### 7. Emergency Operation of Wing Flaps. If the electric hydraulic pump doesn't work, the flaps may be lowered manually be placing the flap control handle (figure 8) in the "DOWN" position, and pumping the auxiliary hand pump. (See figure 9.) The emergency hydraulic system does not operate the flaps. #### 8. Emergency Bomb Release. The bombs are released manually by placing the bomb release handle (figure 8) in the forward position. #### 9. Belly Tank Release. The belly tank (or belly bomb, if installed) can be released by pulling up on the belly tank release handle. (See figure 8.)